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EYE/SENSOR PROTECTION AGAINST LASER IRRADIATION
ORGANIC NONLINEAR OPTICAL MATERIALS

INTRODUCTION

"éLasers are playing an important and increasing role in

modern society. Their present uses range from compact disc

players to optical data-storage and communication systems.

Because of this wide-spread use, the continuing expansion of

lasers into other arenas and t&gﬁ%@@ge thresholds of human

eyes and electro-optic sensor (Fig. m‘fhere is increasing . 3
concern about eye and sensor protection from laser irradiation. Jrs =

Coupling these factors with the varied frequencies
available using today’s high-powered lasers (Table 1 and Fig.
2) makes eye and sensor protection a complex and difficult
task. That is, an eye/sensor protection device must be capable
of responding to a wide range of wavelengths (from the UV to
the IR), able to handle irradiances on the order of mega to
gigawatts/cm4, the output currently available in common
laboratory environments, and be transparent in the absence of
an incident laser beam. Such a protection device must also
have a response time on the order of picoseconds (10-12 sec) or
better to safeqguard against pulsed laser irradiation.

The eye/sensor grotection devices available today are
narrow band filters3:/4 that can only protect against a limited
number of fixed wavelengths; they cannot protect against a
frequency agile laser. Research is underway in many different
disciplines to develop frequency agile protection devices and
one area that appears particularly promising involves the use
of organic polymeric nonlinear optical materials. Nonlinear

Manuscript approved April 20, 1989.
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Figure 1: A plot of the maximum exposure of eyes to laser
irradiation as a function of irradiance and wavelength. For
exposure times greater than 104 seconds, there is a constant
irradiance threshold. This figure was adapted from Ref. 1.
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optical materials are those whose optical properties have a
nonlinear dependence on the intensity of the incident light.
The design flexibility and fast response ti = (1014 - 10-15
sec) offered by organic polymeric nonlinear optical materials
has made this a very active and promising research
area.>-12,15,17-2 (Nonlinear optical processes on this time
scale are mainly electronic in nature. 5-17)

It is the purpose of this report to review the progress
that has been made in developing organic polymeric nonlinear
optical materials with respect to eye/sensor protection
technology. We begin by discussing the functioning of the eye
and defining the desired eye protection parameters. This is
followed by a brief introduction to the origin of nonlinear
optical effects and how they are measured. Recent developments
in nonlinear optical organic materials are then presented, with
specific examples of proposed or prototyped eye/sensor
protection devices following. Finally, future areas of
interest are defined.

THE HUMAN EYE

Of all the organs of the human body, the eye is probably
the most fascinating and intricate: its sensitivity to
brightness can vary by a factor of 100 billion, the dark
adapted eye is capable of detecting single photons and it works
with nearly 100% quantum efficiency. 2,22 1t is these kinds of
extraordinary qualities that make it difficult to protect the
eye from laser damage.

VISION

The physical process of vision begins when light enters the
eye at the cornea (index of refraction=1. 376)22 which is a
major focussing element (Fig. 3a). Further focussing is
provided by the lens, the next element in the optical path,
which allows for near and distant vision by changing shape.
The iris, located behind the lens, is a power limiter; it
varies the pupil size, controlling the amount of light entering
the eye. The incident light continues on through a clear
jelly-like substance, the vitreous humor, onto the
photosensitive retina, the detector.

The retina is composed of photoreceptors, nerve cells and
pigment layers. The photoreceptors, the light sensitive
components, are located in the last cellular layer and point
away from the light source (Fig. 3b). There are of two types
of photoreceptors, rods and cones. Cones are found packed in
the fovea (Fig. 3a) and are responsible for color vision and
vision in bright light while the rods are distributed
throughout the remainder of the retina and are responsible for
vision in dim light. 2,22 The structure of rods and cones is
different (Fig. 3c), the largest difference being in the region
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Figure 3: The major components of the human eye are shown in
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of the rod and cone cells (c). This figure was adapted from

Ref. 22.
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where the 1ight absorbing pigments (called rhodopsins) are
embedded in regenerating membrane discs.

The photosensitive rhodopsins contain the light absorbing
molecule retinal which is chemically linked to the protein
opsin. The absorption of 1light induces an isomerization in
retinal (Fig. 4) which is thought to cause a structural change
in opsin. The isomerization of the protein is believed to
separate charged groups and thereby effectively store energy
(quant%m yield of ~60%) within a few picoseconds (10’1 2
secs). 2 ‘The transduction of this light-induced response to
the neuronal network in the retina is acconéplished via the
plasma membrane and chemical messengers. 2

VISION DAMAGE

Although vision is limited to the eye’s response over a
relatively narrow wavelength region (see Fig. 2), light from
outside this region can have a profound effect on sight. The
cornea absorbs infrared radiation (1.4-10 um)1‘3123 and the
cornea combined with the lens can absorb near ultraviolet
radiation (0.2-0.4 pm).1‘3'23 Therefore, ultraviolet and
infrared radiation can damage the cornea causing
photokeratitis, corneal burns and cataracts?-3/23 ang thereby
impair vision. However, the greatest danger comes from
visible to near-infrared radiation (0.4 - 1.4 um) which the
cornea and lens transmit, focussing onto the retina (optical
gains on the order of 105) . '~ Damage to the part of the
retina providing fine detail discrimination and color
sensitivity, the fovea, drastically affects vision while damage
to the retina outside the fovea does not seriocusly impair the
ability to see.4rJ Unfortunately, little recovery is possible
from damage to either part of the retina.<-

Injuries to the eye from laser irradiation are usually
grouped into three ¢lasses: photochemical, thermal and
mechanical.ls<2,23, Photochemical damage involves chemical
bond breaking and is associated with long e:zposures to short
wavelength light (blue to ultraviolet).<s 24 Thermal damage is
caused by visible and infrared radiation for pulse lengths of 1
microsecond or longerzl 24 angd includes denaturization
processes, i.e., the uncoiling of protein molecules resulting
from the breaking of weak hydrogen bonds. Such processes can
lead to the rupture of cell walls and enzyme inactivations.
Very short pulse lengths (less than microseconds) result in
mechanical damage to the eye in the form of acoustic and shock
waves.2/24 Tt is the latter two damage mechanisms which are of
the greatest interest with respect to eye protection from laser
irradiation.

Thermal eye damage is usually discussed in terms of the

amount of energy incident on the eye: it is the cumulative
energy that causes injury. '™~ The following are commonly used

7
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eye damage thresholds, We:1

* For pulse durations of 1 - 18 ns: Wg = 0.5 pJ/cm2
* For longer pulse duration /s up to 10 Se.S:
We = 1.8t3/4m3/cm?  (t in seconds)

As an example, usina the forementioned damage thresholds
and a value of 100 mW/cm“ for the output of the sun, ¢ an eye
protection device must attenuate the light by a factor
eqguivalent to 1.5 optical density units (ODU) (a transmission
reduction of 97%) when directed at the sun.

PROTECTION STRATEGIES

Any successful eye/sensor protection device must interact
with and attenuate the laser light before it reaches the
detector system. The interaction of light with matter is
usually classified in one of three categories: absorption,
dispersion or scattering. Absorption can be an effective
protection strategy and representative examples of absorption
devices under investigation include particle suspension,
chalcogenide, VO3, Ge, and two-photon absorption activated
power limiters. However, such devices often have reduced
transparency in the visible spectral region or unacceptable
response times. Therefore, much of the recent research into
eye/sensor protection has focussed on using dispersion or
scattering to redirect the 1light and this is where nonlinear
optical materials have the greatest potential for impact in the
near term: nonlinear optical materials can have unique index
of refraction properties and fast response times.

ORGANIC NONLINEAR OPTICAL MATERIALS

Nonlinear optical materials have been known and studied for
over two decades with most research efforts being successfully
directed at inorganic materials, 2r Sy in particular,
inorganic crysta1527, glasseszsf 29 and semiconductors.30-32
The most familiar example of inorganic nonlinear optical
materials are crystals such as potassium dihydrogen phosphate
(KDP) and lithium niobate (LiNbO3). However, more recently,
interest has focussed on such inorganic materials as tungsten
bronze crystals. 3 With the recent emphasis on optical
computing and communication, a need for nonlinear optical
materials with better mechanical processing and physical
properties than available in typical inorganic nonlinear
optical materials has become apparent and researchers have
turned to examlne organic %olymeric
materials .2/ 1,34~ It is now generally agreed that
organic materlals have the potential for nonlinear optical
effects which are orders of maqnltude better than currently
used inorganic materials. 14,17-21,34,37,38,40-45" 1his
is based on the origin of the nonlinear optical effect in
organic materials: the easily polarized molecular electric
fields.’+10,74,15 gytensive research is underway on the
development of nonlinear optical organic materials and a

11
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detailed theoretical understanding and desgription of the
origin of these optical effects. 5-21,26-182 1t j5 the latter
that is discussed in the following section.

THEORY
Linear Refractive Index

In order to develop a more comprehensive understanding of
nonlinear optical effects and materials, it will be useful to
briefly examine the origin of the linear refractive index.

Consider the classical model (Lorentzian) of an atom with
one electron and the effect of applying a static electric
field: the electron-nucleus distance is altered - a
polarization is induced. For the simple case considered here,
the distance change is linearly proportional to the applied
field. If anoscillating electric field (like in a low
intensity monochromatic light beam) is applied, the electron
oscillates about its equilibrium position. This oscillating
dipole emits electromagnetic radiation (light) at the same
frequency as the incident light but with a different phase due
to the restoring forces acting on the electron.

Extending this simple example to include a row of N atoms
(Fig. 7), we see that a monochromatic light wave having passed
through the N atoms will have a different phase than if it had
not. That is, the light wave appears to move more slowly
through the sample than through the surrounding vacuum. The
phase difference is directly related to the number of atoms in
the row, N, and therefore to the sample length or thickness.
The ratio of the speed of light in the sample, Cgapmple, and in
vacuum, Cygcyum: i1s known as the index of refraction, n =

Cvacuum/Csample-

An oscillating dipole has a toroidal shaped radiation
pattern (a sin 6 dependence, where ¢ is the angle between the
axis of the dipole and the direction of observation) and
therefore reradiates light in many directions. However, only
the reradiation in the forward direction is phase-matched and
therefore additive. That is, any radiation not in the forward
direction is out of phase with the radiation in that same
direction from other atoms and so destructively interferes.
Also implicit in the simple models discussed above, is that all
the dipoles radiate the same fraction of the incident wave. If
one group of dipoles radiates a different fraction, some of the
reradiated light will be visible in other directions -
scattered radiation.

Molecular Polarizability
Noncentrosymmetric molecules (those without a center of

symmetry) have complex charge distributions and, therefore,
possess an intrinsic dipole. Placing such a molecule in a

13
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static electric field (E) distorts the charge distribution
changing the dipole. When the electric field is small compared
to the internal fields due to the electrons, the molecular
polarizability (p), which is proportional to the dipole moment,
can be described in a power series

P = Po + aE + BEE + 78EEE + .... (1)

where a, 8, v are the static molecular polarizability tensors,
respectively, the linear polarizability and the second and
third-order hyperpolarizability. At lower field intensities
(small E’s) only the first term in equation 1 (a term) has an
appreciable effect on p, and this is the case discussed in the
earlier atomic example. As the field intensity increases, the
second two terms (the second- and third-order
hyperpolarizabilities, respectively) become more important. It
is these latter two terms that are responsible for a molecule’s
nonlinear optical behavior. Physically, these terms represent
a measure of the size of the nonlinear effect. That is, how

easy it is to induce a polarization or equivalently, how

tightly bound the electrons are to the nuclear framework. (The
looser the binding, the further the electrons can be driven

away from the nuclear framework resulting in a larger
polarization and thereby, a larger nonlinear optical effect.)
The above equation is modified for centrosymmetric molecules by
the removal of the polarizability term pg (with a center of
symmetry, there is no intrinsic polarizability) and removal of
the second-order term (8 = 0). Details are discussed below.

With the advent of the laser, large optical fields became
available and it was natural to consider time-dependent fields.
The equation describing the time-dependent molecular
polarizability retains the notation of the static case for
historical reasons, i.e.,

P = pg + a-w;wpE(w) + A(-w;w],w))eE(wq)E(w3) +
Y -w;wpwy,w3)3E(w)E(w2)E(w3) + .. .. (2)

where the coefficients are complex tensors and have frequency
dependence. For example, the common linear polarization term
a(-w;w) is composed of a real part, corresponding to the index
of refraction, and an imaginary part, corresponding to
absorption. The frequency dependent tensor notation uses
negative signs to indicate conservation of momentum and
subscript arguments to indicate the frequencies of the electric
fields. For example, in second harmonic generation, the
second-order microscopic polarizability tensor is represented
as f(-2w;ww) or for the linear electro-optic effect (electric-
field-induced-birefringence with a linear field dependence),
B(-w;0,w) .

We can obtain some important general information about the

molecular properties associated with nonlinear optical effects
by examining equation 2. First, consider an isotropic molecule

{5
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Figure 8: 1In (a) a noncentrosymmetric rigid rod molecule is used
to demonstrate the origin of the molecular dipole. The arrows

indicate the direction of the intrinsic dipole moment. 1In (b) the
origin of the molecular dipole is shown to be due to vibrations in
a centrosymmetric molecule, i.e., one that pcssesses a center of
symmetry.




and the second-order hyperpolarizability term involved in

second harmonic generation: +p(2) = B(2w;ww)eE(w)E(w). For

an isotropic molecule, B is independent 5»f direction and

therefore constant. Thus, if the axis direction is reversed (x-»
-X, Y*-Y, z-*-z) while leaving the electric field and the

dipole moment unchanged in direction, the second-order ter?\ %f

equation 2 becomes, -p(2) - ﬂ(-Zw;w,w)oi-E(w) J(-E(w)) = +P 2),

This can only be true if +p(2) - _pl ), i.e., # = 0. In other

words, centrosymmetric molecules only have contributions from

odd-order terms in equation 2; they cannot exhibit even-order

effects such as second harmonic
generation.>:8,12,17-21,35,41,49-51,53-56

Second, it is clear that molecules with easily polarized
electron clouds have the greatest potential for large nonlinear
optical coefficients. Thus, we do not expect saturated organic
molecules (i.e., those without » bonds) to exhibit much of a
nonlinear optical effect: the bonding electrons are well
localized so only small changes in charge distribution with
changes in local field environments are expected. 35,41,48-52
However, unsaturated, conjugated molecules with their large =«
electron delocalization should and do exhibit large nonlinear
optical responses. 17-21,35,41,48-51 A more detailed look at
the appropriate molecular properties for specific nonlinear
responses is presented below.

SECOND-ORDER MOLECULAR PROPERTIES

The majority of work reported on organic nonlinear optical
materials has focussed on second-order
effectsB8,12,14,17-21,40-75 (molecules with large g coefficients
in equation 2) for the obvious reason that the effect is larger
than the third order response and therefore easier to measure.
There exists a good understanding of the origin of this effect
and how to ogtimize molecular and bulk material properties to
enhance it.8,12,17-20,35,37,38,40~-75 por organic molecules the
general molecular properties that are required for good second-
order nonlinear response are: noncentrosymmetry, planarity and
delocalized _electron
systems.sl 12,1720,35,37,38,40,41,44,45,48,54-68 Additionally,
substituent groups that enhance the charge asymmetry of the
molecule, i.e., strong electron donor and electron acceptor
groups, lead to low-1lying charqe-transfer resonance states and
thereby enhanced g’s.8/12,17-20, 40,41,54,55,57-59,63,69,72-75
The charge asymmetry inducing substituents make it easier to
polarize the molecule: the flow of charge is enhanced in one
direction - like an "optical diode". (See Fig. 9).49-51

In the following table, examples showing the importance of

the above molecularzproaperties in enhancing second-order
effects are given.’2:7
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2] MOLECULAR PROPERTIES

‘\J

The theory and understanding of third-order processes
iwneve - ain equation 2 is significant) and their origin in
crgan:c Meliecules is still in its infancy but has seen
remarkabl progress over_the past few
years. ? g|8 20,34,37, 33 48,52,76-89 phe molecular origin
of thlS effect is believed to be related to the correlated
motion of electrons and to hl?hlg chargg correlated virtual
excitations (Fig.10). 58,10,718,20,37 48,74,76,78-80,84
The correlated motions are believed to arise from the combined
action of electron—ghgnon and coulombic
interactions. 7,38,48,74,76,78-80,85 However, the
magnitude of the electron-phonon coupling contribution is not
clear.

Identification and characterization of the molecular
properties which lead to enhanced third-order effects is under
study. The most important molecular property appears to be
planar conjugation. There is some evidence that ladder
polymers (polymers formed using fused aromatic rings) may be
superlor gen chaln golymers because of improved r orbital
overlap 3 37 8,76,80-82 533 it is predicted by some
researchers that 4 w1ll not 1ncrease be%ond that observed for
20-25 repeat units (~ 60 A).6,37,38, 76 There is also
experimental evidence suggestlng that the incorporation of
certain heteroatoms into the conjugation len%th can
dramatically increase the third-order effect 37,38,76,81,82 '
again through improved r orbital overlaps. Another property
that may be important and that is under investigation is the
effect of intermolecular bonding, e.g., hydrogen bonding.

Charge-induced asymmetry as a means for enhancing third-
order effects remains a controversial issue: a great deal of
electron delocalization may arise from charge-induced
separations. Further exper‘mental investigations are required
in order to assess its importance.

MATERIAL PROPERTIES

The polarization induced in a material by the application
of an electric field, E, is described by

P =Py + x{VE+ x(2gE + x(3EEE + ... (3)

where P is the materia (1 S)olarizability, Pg is the intrinsic
polarizability and x are the macroscopic material
coefficients known as the material susceptibilities. The
macroscopic susceptibilities are related to the microscopic
hyperpolarizabilities as shown below.

x“) = NoF (w)2 (4)
x(2) = NAF (wq )F(w2)F(w3) (5)
<3) = N9F (w1 )F(w2)F(w3)F(wyg) (6)
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N is the number density of molecules and F is the local field
factor at the specified frequency, i.e., the value of the
electric field at the site of the molecule. F is a difficult
quantity to estimate becauss of the mutual polarization of
molecules in dense phases. 50,57,61, Therefore, great care
must be taken in relating microscopic and macroscopic
q?a;)'xtities. This is especially true for equations relating

to the second-order polarizability, A, because a detailed
knowledge of the projection of the tensor onto the oriented
molecule is requlred 17,41,49,50,57,93 Equatlon 5 is for the
simplest case of a ''rigid lattice~ orlented gas' where all the
molecules4%01nt in the same direction and are fixed in
space.

Molecular orlergtatlon w1th1n a medium is an important
aspect of both x and x nonlinear optical

materials. 12,17-21,43,53, 56 63-66,72-74,91-94 The more ordered
the molecules within the material, the larger the material
response (see Fig.11). The two most popular methods for
ordering molecules in materials are, electri fleld

poling, 3, +64,92-94 primarily used for § materials, and
Langm? {—Blodgett film dep051tlon used for both x(z)
and x materials.

Electric field poling works well for X(2) materials because
of the required molecular charge asymmetry and its application
to guest/host systems is diagrammed in Fig. 12. Initially, the
guests are frozen in a random orientation in the polymeric
host. The material is then heated to a temperature greater
than the glass transition temperature of the host. This allows
the guest molecules to rotate within the host. An electric
field is then applied, causing the guest molecules to
preferentially orient along the field direction. The material
is cooled below the host’s glass transition temperature, while
maintaining the orienting electric field, thus freezing the
guest molecules in an ordered, noncentr?s mmetric orientation.
The use of this technique to orient x active side chains of
main chain polymer backbones (F 3g 3? is also obvious and an
area of active research.41, 96-10

While high degrees of order can be initially achieved using
this technique, the molecular order does decay with time due to
thermal relaxation and the inevitable increase in entropy of
the system. Half-life for randomization can vary from a few
days to a few years depending on She 6>olln1g conditions and the
particular molecules involved. A concentrated
research effort is underway to increase half-lives. 53,100,101
For exa ,f)le, adding functional groups to the pendant side
chains97 to serve as order preserving 'Hooks and Eyes’ (Fig.
14), or dispersing the nonlinear optically active molecules in
piezoelectric hosts where the intrinsic electric field94 are
methods being examined to help maintain the preferred
intermolecular orientation.
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Types of Molecular Packing

Packing Type Order Magnitude
\ / Non-centric Second Moderate
m Non-centric Second Strong
HH Centric Third Strong
\\’é Centric Third Weak

-+

Direction of dipole moment

Figure 11: The effects of molecular packing on the magnitude
of second and third order non-linear optical material
properties are indicated above. The arrows indicate the
direction of the dipole moment.
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ELECTRIC FIELD POLING

\

P
/

—\
I\

\

heat
—

GLASSY, RANDOM ORIENTATION

RUBBERY, ALIGNED

Figure 12:
technique.

above the glass transition temperature of the polymer host.

cool

heat
_’

E-field on

RUBBERY, RANDOM,

FREE TO ROTATE

\

/

E~-field off

pol

GLASSY, ALIGNED

A graphic depiction of the electric field poling
In the first step, the composite material is heated

An

electric field is then applied to orient the molecules and the
material is allowed to cool, freezing the guest molecules in a

particular orientation.
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ELECTRIC FIELD POLING OF
LIQUID CRYSTAL SIDE CHAIXr POLYMERS

Figure 13: The electric field poling technique applied to
liquid crystal side chain polymers. The rectangles represent

the nonlinear mesogens; the hatched boxes are to assist in
indicating orientation.
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CHEMICAL "HOOKS AND EYES”

Figure 14: Chemical "Hooks and Eyes" could be used to assist

in maintaining the orientation of the non~linear mesogenic
pendant groups (the rectangular boxes as in Fig. 13) of liquid
crystal side chain polymers after poling. Such a concept could be
based on strong photo-induced covalent bonds (crosslinking) or
weaker hydrogen bonding.
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The Langmuir-Blodgett deposition technique allows for

monomolecular control of orientation and
composition. 43,66,95,102-107 rhjg technique requires surface
active molecules i.e., molecules with hydrophilic and
hydrophobic ends, and is useful in preparing both x(z) and x(3)
materials. The technique is diagrammed in Fig. 15. The
surface active molecules are spread onto the surface of the
water and compressed to form a monomolecular film. Then, by

. repeated dipping, monomolecular film layers can be deposited
onto a substrate. Unfortunately, Langmuir-Blodgett films are
often contaminated with crystallite regions causin
unacceptable amounts of light scattering.gsl 02-104

MATERIAL MEASUREMENTS: x(2) MATERIALS

There are several experimental methods available for
measuring/characgerizing second-order nonlinear optical
materials. 108,10 Several of these methods are listed below
and diagrams (Figs. 15-20) describing the techniques are shown
on the following pages along with some of their advantages and
disadvantages. The choice of characterizing method depends on
the type of descriptive information desired and the physical
form of the material.

x{2) CHARACTERIZATION METHODS
SECUNY HARMUNLC GENERATION
SINGLE CRYSTAL CZCOND HARMONIC GENERATION
EFISH
POLYMER POLING
ELECTRO-OPTIC EFFECT

MATERIAL MEASUREMENTS: X( 3) MATERIALS

Experiment com%lexity dramatically increases when making
measurements on 4( ) materials as compared to x(2
materials:’8,79,109 313 materials, ranging from air to the
sample holder, can exhibit third-order effects (there are no
symmetry restrictions) 17,18,20,34,35,41 3n4 the effect is small
while the samgle materials are often of poor optical

quality. 14,88,46,81,82 rp addition, the experimenter must be
concerned with resonant vs. nonresonant effects and, in some
measurement methods, with the orisq'in of the intensity dependent
index of refraction, n2.9' 11,29,81,82,110,117 gefore
describing a few of the methods available for measuring X(3)
materials, resonant enhancement and intensity dependent
refractive indices will be briefly discussed.

x(3) may be expressed as the sum of two types of
susceptihilities due to resonant (R) and nonresonant (NR)
contributions10,17,18,20,110
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LANGMUIR-BLODGETT TECHNIQUE

SAMPLE
#SOE%TION MOLECULES
WATER ; a_ _1_ 4/ -~ A yal
—J ’ - —
"—WATER e
SPREADING

m | ==

FILM COMPRESSION

p
~ ﬁi
~——4:3~j 7
e 1 i fo
T R ﬂ.‘.bbb.b’ty ‘ ' E%_QAAAgQAQ
DEPOSITION (1St LAYER)™ B
lL Gl t W
- ‘(% $¥>E) —
'I D ‘ % ;é T
(2nd LAYER) ™ i
* ; VE3
°:E§ 32
| ™’ § ::3
(3¥d LAYER)

Figure 15: A descriptive outline of the production of a thin-
film using the Langmuir-Blodgett technique.
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The nonresonant susceptibility contributions occur in spectral
regions far from any opt-cal absorption of the material, while
resonant contributions occur at frequencies near or resonant
with the material’s optical absorptions. Resonance effects are
usually measured at absorption band edges and can cause
considerable enhancement of the nonlinear optical
susceptibility through admixtures of excited state properties
and contributions from excited state dynamics. For materials
of interest in eye/sensor protection, the nonresonant effects
are of greatest interest because they are responsible for
broadband response with good transparency at ambient light
levels.

Another important aspect of x(3) materials is the intensity
dependent refractive index, ny. At high irradiance levels, a
material’s index of refraction can be described by

n=ng+n3(I) (8)

where ng is the linear refractive index and ny is the intensity
dependent refractive index.9,11,29,110,711 3¢ nonresonant

optical frequencies, nj can arise from any of the mechanisms
listed in the following table.%,29,81,82;11

TABLE 4
MECHANISMS OF NONRESONANT SELF-INDUCED INDEX CHANGES

MECHANISM n, T

(esu) (sec)
MOLECULAR-ORIENTATION KERR EFFECT 10711 - j9-12 10711 - jp9-12
MOLECULAR-REDISTRIBUTION (LIBRATIONS) 10712 - ;0-13 -~ 2 x 10713
NONLINEAR ELECTRONIC POLARIZABILITY 1078 - 1p-14 10714 - 10-15
ELECTROSTRICTION 1011 - jp-12 1078 - 1079
THERMAL EFFECTS 1074 - 10-5 107} -

Of these mechanisms, the nonlinear electronic polarizability is
the most important for eye/sensor protection due to its fast
response time. While the molecular-orientation Kerr effect
(quadratic electric-field-induced-birefringence) is also fast
it suffers from a saturation effect at high li?ht intensities
due to the complete orientation of molecules. 110,112

!

There can also be a resonant contribution to nj when near a
strong absorption frequency. At resonant or near resonant
frequencies, some of the light is absorbed which causes a
redistribution of the material’s electronic energy
levels.8:10,29,110 1hjig results in a change in the dispersion
associated with the absorption band, a resonant enhanced
intensity dependent index of refraction. Such an effect is in
general not compatible with the broadband response required for
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an eye/sensor protection device.

Of the characterization methods listed .elow and diagrammed
in the following pages (Figs. 21 -25)8 onloygthird harmonic
generation does not depend on nj .81,82,109,112-116 p¢ before,
the sample form and the type of information desired dictate the
appropriate characterization method.

(3) CHARACTERIZATION METHODS
DEGENERATE / NONDEGENERATE FOUR WAVE MIXING
M-LINE TECHNIQUE
SURFACE PLASMON TECHNIQUE
OPTICAL KERR EFFECT
THIRD HARMONIC GENERATION

MATERIALS PROGRESS.
x(z) Materials

Most of the organic material development work has involved
x(z) systems: organic crystals, guest/host type structures,
liquid crysstal side chain _?olgmers and linu'd crystal
polymers. »14,17,19,21,37,38,40-75,100,117 of these general
types, the latter three are of greatest interest because of the
difficulties associated with growing reproducible, high optical
quality crzzstals and the accompanying processing
problems .72,118 yan der waals crystals are formed by dipolar
forces between molecules and so, good second-order molecules
with their large dipole moments are difficult to assemble into
a noncentrosymmetric bulk crystal .12 Researchers are examining
different approaches to crystal growth using forces stronger
than van der Waals attractions such as hydrogen bonding and
molecular salts. 17/

Non—cryst?lil.ine organic materials appear to be promising at
this time: 2) values on the order of 10-7 esu have been
reported with rgsgonse times on the order of
microseconds.14,37,38,96,98,100 rphe majority of work in this
arena has focussed on guest/host type structures where the
second-order molecule is a guest in a polymer host, e.g., an
azo-dye in poly(methyl methacrylate). 12,64,93,176 One
particularly interesting example of this type of system is the
use of a crystalline copolymer of vinylidene fluoride and
triflugroethylene as the host and an aminoazo compound as the
guest. 4 In this case, the host is a ferroelectric composite
with electric fields of 106 V/cm permanently induced in the
amorphous regions containing the guest molecules. 94 tThis
should lead to saturation orientation ?f the guest
molecules®’/%4 and thereby a large x 2),

A significant amount of work has also been reported

involving Langmuir—Blod%ett films of highly polarizable
molecules.40,43,66,95,103-107
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However, probably the most promising area of organic
material development involves liquid crystal side chain and
liquid crystal main chain
polymers. ,14,37,38,57,99,100,117,119-121 Liquid crystal side
chain polyvmers are formed by attaching mesogenic units to
polymer backbones using spacer groups to decou1ple mg%:ion of the
side chain from the backbone (See Fig. 26). 41,1191 A’Z
electric field is used to orient the side chains. 2) values
on the order of 10~ 7 esu have been reported with response times
on the order of microseconds for these kinds of
materials.4,37,38,96,98 preliminary results showing GHz
modulation (nanosecond response téimes) have also recently been
reported, but not published. 14,96,98

On the other hand, main chain liquid crystal polymers1 19
(also known as polar polymers) have demonstrated substantiall%
enhanced second-order effects as compared to their monomers. 3
This enhancement is theorized to arise from the structural
ordering of the monomers. Further enhancement may be possible
by orienting the polymer chains themselves (see the discussion
in Proposed Future Research Efforts).

A major focu? of future x(z) research will be to develop
materials with x 2) oriented 3%arallel to the material surface
rather than perpendicular. 14,37,38,98 gycha development would
allow for greater usable surface areas and possibly thinner
films than are currently available. Both are advances that
would make meeting the optical requirements for eye/sensor
protection devices more realistically attainable.

An extensive compilation of x(z) materials and their
properties can be found in reference 19.

x(3) Materials

Although the origin of third order effects is not fully
understood, progress has been made in developing materials with
useful yx(3J properties.9-11,16,18,20,37,38,85,89,122-141
Organic x materials can be somewhat arbitrarily divided into
four main classes: fused ring polymers, long chain unsaturated
polymers, organometallic polymers and miscellaneous. Appendix
A contains a brief compilation of reported x 3) materials for
each of these areas and an additional area, inorganics,
included for comparison.

The largest reported x(3) values are for long chain
unsaturated polymers, specifically the poly(diacetylene) (PDA)
materials, which have received extensive
attention.9,16,34,111,122-139 5 yige variety of substituent
groups to the main chain have been studied, but overall, PDA
materials are highly absorbing in the vis:i)ble region of the
spectrum and the reported values of x(3 are resonant-enhanced;
undesirable qualities for eye/sensor protection. However,
steady advances in the magnitude of the third-order effect have
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Recent investigations of ladder po(laymers and rigid-rod
pol;mers have reported nonresonant x ) values on the order of
1077 esu and are a %romising new area of
research.9,10,13,37,38,44,78-80,140-142 rppege large nonlinear
effects are believed to arise from incrggseg T or%ital overlap,
as compared to open chain polymers. 13,37,38,76,78-80 cyrrent
research efforts are focussing on the effects of substituent
groups and heterocatom substitution, which preliminary results

suggest may dramatically increase the optical
nonlinearity.gr37138r7g18°:81:82,89

An exciting new area in organic x(3) material development
is organometallics.1 - The incorporation of inorgan%g
components into organic Folymer sSystems has produced x )
values on the order of 10~ 10 esy.143-145 Investigations into
the effects of different inorganic com?onents in these
materials are currently underway. 143-145 Inorganic/organic
guest/host systems have also shown third-order effects but the
magnitude is not clear.

Among the miscellaneous x(3) matgrials, small metal
particles in colloidal suspensions, 146 554 dye attached
copolymers1 47 ang dye doped glasses1 48,149 have all exhibited
rather large x ) and ny values.

Future research efforts on organic x(3) materials are being
directed at developing a fuller understanding of the origin of
the third-order effect via small systematic changeg on the
molecular level, i.e., trial and error. ,38,81,8
Concomitantly, material development will occur. The other
major research thrust will be in developing materials with
better optical properties as well as improved mechanical and
processing properties .14,37,38 These latter properties are
critical to the development of useful protection devices.

DEVICE CONCEPTS

Material Capabilities

In this section generic eye/sensor protection devices that
make use of nonlinear optical materials are described. It is
generally agreed that x materials have now developed to the
point where they can compete with their inorganic analogs in
the areas of o%tical communication and computing devices (X(Z)
~10~7 esu).37,38,45,88 Howevex(‘ with respect to eye/sensor
protection, devices based on 2) materials generally involve
the linear electro-optic effect or frustrated internal
reflection and are relativel4y slow to respond (msec to
nanosecond time scale).'4,64,88,93,117,150 yhjile such a
response time may be adequate for protection against CW laser
irradiation, it is not adequate for pulsed laser irradiation
protection. In addition, electro-optic devices usually require
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high voltage power sources; they are not passive devices.
Therefore, most recent : coposals for eye/sensor protection
devices employ designs based on electronic polarizable x(3)
materials (see Table 4).

State-of-the-art third-order electronic materials have
x(3)s that are on the order of 10~
esu.14,37,38,78,79,81,82,160 1f¢ improvements in the optical
quality (reduced scattering and absorption) of these materials
can be made, they may find application in optical wave guide
d?v}ces. However, before they find broad device applications,
X 3) must be increased by at least two orders of
magnitude.14' 7,38

Device Designs

%n the following section and figures, device designs based
on x 2) and x( materials are described.

The first concept (Fig. 27) involves the linear electro-
optic effect. This effect is associated with 2) materials
that are placed in an electric field. The applied field causes
the material to become anisotropic and birefringent. The
proposed eye/sensor protection device places the material
between crossed polarizers. (A nonlinear optical
solution/liquid would be housed in a material cell located
between the crossed polarizers.) In the absence of an applied
field, the crossed polarizers completely attenuate any incident
light. Applying an electric field causes the nonlinear
material to rotate the plane polarized light coming through the
incident polarizer allowing some light to pass through the
exiting polarizer. The maximum throughput is limited to 50%
because the incident light must first be polarized and this
attenuation is too great for eye protection systems. In
addition, an adequate response time has not been demonstrated
for these materials. For guest/host materials, the response
time is on the order of microseconds (nanosecond response times
have been reported but not published).”°- For liquid or
solution samples, the effect can be fast for small molecules,
on the order of tens of nanoseconds, but as the size of the
active molecule increases so does the response time.
Additionally, the response time for these types of devices will
depend on overcoming the difficulties associated with
generating fast electronic pulses in the kilovolt range.

Liquid crystals and ferroelectric liquid crystals have
shown promisin? results when incorporated into linear electro-
optic devices, 51-15 but suffer from the same disadvantages
listed above.
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As diagrammed in Fig. 28, a device similar to the linear
electro-optic one described above can be designed making use of
the optical Kerr effect. For the system diagrammed, again the
response time depends on the rate of reorientation of the
active molecules.

A slight variation in this theme is the liquid crystal
composite. In this device, small droplets of liquid crystals
are dispersed in a polymeric host. The application of an
electric field causes the liquid crystals in the droplets to
align making the material transparent. This device requires
the refractive indices of the polymeric host and the oriented
liguid crystal tomatch. As the electric field is reduced,
the liquid crystals assume a more random orientation and a
refractive index mismatch occurs resulting in increased
scattering - the material becomes a milky white color. The
process is reversible and easily adapted to device design.
However, the response time of the device is on the order of
milliseconds, too slow to protect against pulsed lasers. 195 (A
similar device using microdroplets of liquid crystals and
depending on the optical Kerr effect has also been reported. 196
The response time is on the order of 50 microseconds for this
system.196)

A device similar to the liquid crystal cc(‘)m;))osite has been
proposed that would use a dispersion of x 3 microparticles in
a polymeric host (Fig. 29). The design principle is to make
use of the intensity dependent refractive index, ny. At low
light irradiances, the index matched particles and host will
let the 1light pass through unaffected. However, at high
irradiances, the index of refraction of the nonlinear optical
material changes, creating an index mismatch and thereby
scattering the incoming light. The advantages to this type of
device are that is passive, ie., powered by the light itself,
it is fast enough to prote?t against pulsed laser threats if
electronic polarizable x 3) materials (see Table 4) are used
and that the device is normally optically transparent.

Another x(3) material device concept, based on four wave
mixing, is diagrammed in Fig. 30. 1In this type of device, two
counterpropagating lasers (beams 1 and 2) setup a phase grating
in the nonlinear optical material that rejects a high intensity
input laser beam (beam 3) while letting a low intensity input
beam pass through unaffected. These counterpropagating beams
can be at the same frequency as the input beam (degenerate four
wave mixing) or at a different frequency (nondegenerate four
wave mixing). Most device designs employ a permanent set of
crossed laser beams, but using a beam splitter as diagrammed,
the incident beam can be used to form these beams. The
rejected beam (beam 4) is conjugate to the input beam which is
why this method is sometimes referred to as phase conjugation.
(By phase conjugation, we mean that the rejected beam has the
same phase as the input beam but travels in exactly the
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opposite direction, a sort of time reversal symmetry. See Fl?
31.) This dev1ce requires the use of electronic 3)
materials (Table 4) to p.otect against pulsed lasers.

Another grating type device suggested for use in eye/sensor
protection uses photorefractive materials. 162 1p these
materials, a weak probe beam and a strong incident beam are
crossed setting up an intensity distribution which in turn
results in a space charge density distribution as diagrammed in
Fig. 32. The resulting space charge electric field and index
modulation are out of phase with respect to the intensity
distribution resulting in a phase grating. This type of effect
is limited by the ab1llgg of charges tomigrate and define the
space charge density. 4 Literature reports suggest a
fundamental rggp?nse time lmut on the order of picoseconds
(10-12 gec). The only materials observed to exhibit
this effect thus far are certain inorganic crystals. The
possibility of such effects arising in organometallic and metal
doped polymeric materials has been proposed.

One final device concept involves the intensity dependent
refractive index, na. In these beam bending devices,
diagrammed in Fig. 33, high intensity light alters the
refractive index of the nonlinear optical material, deflecting
the beam out of the normal optical path. While such devices
are simple in concept, they are difficult to put into practice.
This is because a high intensity symmetric beam will experience
a symmetric phase shift and so will not deflect out of the
optic path. 165 p variety of methods for imparting an asymmetric
profile to the input beam have been suggested, many making use
of grating type structures as diagrammed in Fig. 33.
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OPTICAL PHASE CONJUGATION

PHASE
CONJUGATE
MIRROR

“CONJUGATE WAVE” .\;
. « 7

NO LINEAR OR ANGULAR
PHOTON MOMENTUM
TRANSFER TO THE PCM

=> NO RADIATION PRESSURE
=>>NQ RECOtL

INCIDENT WAVE

OROINARY MIRROR

REFLECTED WAVE
LHCP

A YA YA YA

NI TXXTXIAR

{-—0'/ RADIATION PRESSURE
CAUSES MIRROR TO
RECOIL

RHCP
INCIDENT WAVE

Figure 31: The concept of phase conjugation is illustrated
using left and right handed circularly polarized light (LHCP
and RHCP, respectively) and a phase conjugate (top of figure)

and ordinary mirror (bottom of figure). This figure was adapted
from Ref. 161,
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PHOTOREFRACTIVE DEVICES

TWU COHERERT
LIGHT BEAMS

PHOTOREFRACTIVE
MEDIUM

LIGHT
INTENSITY

SPACE
CHARGE

JE

an

Eo

Figure 32: The upper half of the figure diagrams the evolution
of the photorefractive material response. Diagrammed in the
lower half of the figure is a configuration which could be used
for eye/sensor protection. At low irradiance levels, E; would
continue unhindered through the crystal. However, at high
irradiances, E; would be deflected out of the optical path.

52




eye damage thresholds, We:1
* For pulse durations of 1 - 18 ns: We = 0.5 pd/cm?2
* For longer pulse durations, up to 10 se.s:
We =1.8t3/4mJ/cm? (t in seconds)

As an example, usin% the forementioned damage thresholds
and a value of 100 mW/cm“ for the output of the sun, “ an eye
protection device must attenuate the light by a factor
eguivalent to 1.5 optical density units (ODU) (a transmission
reduction of 97%) when directed at the sun.

PROTECTION STRATEGIES

Any successful eye/sensor protection device must interact
with and attenuate the laser light before it reaches the
detector system. The interaction of light with matter is
usually classified in one of three categories: absorption,
dispersion or scattering. Absorption can be an effective
protection strategy and representative examples of absorption
devices under investigation include particle suspension,
chalcogenide, VO3, Ge, and two-photon absorption activated
power limiters. However, such devices often have reduced
transparency in the visible spectral region or unacceptable
response times. Therefore, much of the recent research into
eye/sensor protection has focussed on using dispersion or
scattering to redirect the light and this is where nonlinear
optical materials have the greatest potential for impact in the
near term: nonlinear optical materials can have unique index
of refraction properties and fast response times.

ORGANIC NONLINEAR OPTICAL MATERIALS

Nonlinear optical materials have been known and studied for
over two decades with most research efforts being successfully
directed at inorganic materials, 5,25,26 i particular,
inorganic crystals 7, glasses 8,29 and semiconductors.30-32
The most familiar example of inorganic nonlinear optical
materials are crystals such as potassium dihydrogen phosphate
(KDP) and lithium niobate (LiNbO3). However, more recently,
interest has focussed on such inorganic materials as tungsten
bronze crystals. 33 With the recent emphasis on optical
computing and communication, a need for nonlinear optical
materials with better mechanical processing and physical
properties than available in typical inorganic nonlinear
optical materials has become apparent and researchers have
turned to examine organic %olymeric
materials .2,14,17-21,34~39 "1t js now generally agreed that
organic materials have the potential for nonlinear optical
effects which are orders of mac%n 1 tude better than currently
used inorganic materials. 5,6,12,14,17-21,34,37,38,40-45" qpjg
is based on the origin of the nonlinear optical effect in
organic materials: the easily polarized molecular electric
fields.’+ 10,714,735 gytensive research is underway on the
development of nonlinear optical organic materials and a
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BEAM BENDING DEVICES
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Figure 33: An {l1lustration of the beam bending device concept.
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PROPOSED FUTURE RESEARCH EFFORTS

In reviewing research efforts to develop organic nonlinear
optical materials for eye/sensor protection, several novel
ideas have surfaced which the authors would like to propose.

The first idea involves using stretched copolymer'films to
assist in enhancing nonlinear optical effects in materials.
Although extensive work has been reported on copolymer systems,
polymer film alignment by stretching'~~ 36 has not received much
attention. The technology for stretching films is well
developed; this is the way Polaroid filters and lenses are
prepared. The following figure (Fig. 34) is a schematic
diagram of how the process would help to increase molecular
order in the material and thereby increase the magnitude of the
nonlinear optical effect.

Another idea that has been proposed by other researchers
and which may have great potential, is organic superlattices.
In general, organic superlattices can be envisioned as
structures with an alternating composition on a molecular
scale. This alternating composition is repeated in only one
direction so that the electrons are confined along a chain.
The following diagrams (Fig. 35 and 36) indicate how these
organic systems would imitate the more familiar semiconductor
superlattices, and give an idea of the type of control that may
be available via substituent groups.

Production of these types of materials via copolymer
synthesis and Langmuir-Blodgett film deposition has been
suggested. These are both areas of established expertise in
the Polymeric Materials Branch at NRL.

Finally, little information was uncovered concerning
investigations into the potential of inorganic polymer systems
for use in eye and sensor p-otection. Inorganic polymers, such
as the linear polyphosphazenes and polythiazyl (Fig. 37), can
exhibit extensive conjugation, a necessary condition for
enhanced nonlinear optical behavior, and enhanced ancillary
properties. For example, silicon based polymer systems should
have enhanced thermal damage thresholds. Additional
theoretical and experimental investigations into the potential
of polymer systems like those described above should be
considered.
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STRETCH

Figure 34: The enhancement in the molecular packing, and thus
the nonlinear optical effect, of a copolymer film via
stretching is diagramed. The rectangles represent the
nonlinear optical units or blocks in the copolymer.
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ORGANIC SUPERLATTICES

BLOCK COPOLYMERS
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Figure 36: An example of how the properties of organic
superlattices, using block copolymers, might be modified for
specific applications.
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Figure 37:

(/N7 N7 N\}L

Two inorganic polymers (a) linear polyphosphazene

and (b) polythiazyl demonstrating extensive 7 conjugation, a
requirement for nonlinear optical behavior, are shown.
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